The University of MichiganNews Services
The University Record Online
search
Updated 10:00 AM August 9, 2004
 

front

accolades

news briefs

events

UM employment


obituaries
police beat
regents round-up
research reporter
letters


archives

Advertise with Record

contact us
meet the staff
contact us
subscribe
 
  Research
Basic RNA enzyme studies promise single-molecule biosensors


Research aimed at teasing apart the workings of RNA enzymes eventually may lead to ways of monitoring fat metabolism and might even assist in the search for signs of life on Mars, according to U-M researcher Nils Walter.

Walter, associates at U-M, and colleague Xiaowei Zhuang and associates at Harvard University, use techniques that allow them to study single molecules of RNA enzymes, also known as ribozymes. Like the more familiar protein enzymes, RNA enzymes accelerate chemical reactions inside cells. Researchers want to learn how changes in ribozyme molecules affect their activity, both to better understand how evolution has shaped ribozymes to carry out their duties and to find ways of manipulating them for useful purposes.

Walter's latest work was published online in the Proceedings of the National Academy of Sciences June 24. In the recent research, Walter's group combined a technique called single-molecule fluorescence resonance energy transfer (FRET) with mathematical simulations to study a ribozyme involved in the replication of a tobacco-infecting virus.

Just as a protein enzyme is not a static structure, a ribozyme also changes shape, cycling back and forth between its compact, catalytically active form and its inactive, extended form. Single-molecule FRET allowed the researchers to directly observe and measure how quickly the ribozyme switched forms and how these rates changed when various parts of the molecule were altered.

With the addition of mathematical simulations, the researchers also could investigate how changing parts of the ribozyme molecule affected its ability to catalyze chemical reactions. They were surprised to find that modifications they made anywhere on the molecule—even far from the site where the chemical reaction occurs—
affected the rate of catalysis.

That's much like what is known to happen in protein enzymes, but until now there was no evidence that ribozymes behaved similarly, says Walter, Dow Corning Assistant Professor of Chemistry.

"It's been known for a couple of years now that if you modify something on a protein enzyme that you think is pretty far away from the catalytic core—where the chemistry is actually happening—you see that the chemistry is affected directly," Walter says. "This has led to the idea that there is a network of motions that make a protein enzyme act as a whole. We are proposing for the first time that this also happens with RNA enzymes."

Getting a grasp on how ribozymes work is important for answering fundamental questions of biology, Walter says, but the work also may lead to practical applications. In particular, Walter and his U-M collaborators—Robert Kennedy, the Hobart H. Willard Professor of Chemistry and Pharmacology, and Jens-Christian Meiners, assistant professor of physics and assistant research scientist, Biophysics Research Division—are exploring their use as biosensors. The idea is to selectively turn on a ribozyme molecule that catalyzes a reaction to generate a product that gives off a specific fluorescent signal only when a particular type of molecule binds.

"When you can do that on the single-molecule level, as we can do now, then you have the smallest possible biosensor," Walter says. Such sensors could be designed to detect important hormones like leptin, which is involved in fat metabolism. With such a tool, "you could detect how a single cell makes leptin and ask how much the cell makes when the environment changes."

In another project, funded by NASA, the researchers hope to develop a biosensor that could be sent to Mars to snoop around for amino acids or other signs that life might once have existed on the planet.

"These projects are still in the development stage," Walter says. "But the technology we are developing here to ask some fundamental biological questions will ultimately help us learn how to design biological sensors with many potential applications."

More Stories