The University of MichiganNews Services
The University Record Online
search
Updated 10:00 AM February 5, 2007
 

front

accolades

briefs

view events

submit events

UM employment


obituaries
police beat
regents round-up
research reporter
letters


archives

Advertise with Record

contact us
meet the staff
contact us
contact us

 
UMHS study finds link in brain-obesity puzzle

A single protein in brain cells may act as a linchpin in the body's weight-regulating system, playing a key role in the flurry of signals that govern fat storage, sugar use, energy balance and weight, Medical School researchers report.
The mouse in the middle lacks the SH2B1 gene, causing it to eat constantly and grow fatter than a mouse with a normal SH2B1 gene (left) and one that has a form of the gene only in its brain (right). (Photo by Liangyou Rui)

And although it's far too early to say how this protein could be useful in new strategies to fight the worldwide obesity epidemic, the finding gives scientists an important system to target in future research and the development of anti-obesity medications.

In the February issue of the Journal of Clinical Investigation, Liangyou Rui and his team report their findings on a protein called SH2B1.

Using a variety of genetic, diet and hormone techniques, they were able to show that SH2B1 regulates body weight, the action of the metabolic signaling molecules leptin and insulin, and the use of energy from food. It also moderated the impact of a high-fat diet on body weight.

The experiments were performed in mice, including two types that the team genetically altered so that they only expressed a unique form of the SH2B1 protein in their brain cells. The protein occurs elsewhere in the body, but the researchers were able to zero in on activity in the area of the brain that coordinates signals from the brain and body relating to food, hunger, and the balance of energy and nutrients in the body.

Rui and his team previously have shown mice that lack the gene for SH2B1—called knockout mice—become obese, diabetic and unable to stop eating. Their bodies lose the ability to sense the signals sent by leptin and insulin that tell the brain to slow down food intake and fat storage.

They looked not only at normal mice and those that didn't have the SH2B1 gene, but also at mice that made SH2B1 only in brain cells, either in normal or larger-than-normal amounts. They found that restoring SH2B1 just in the brain completely corrected the metabolic disorders that the knockout mice had developed, but also improved the brain cells' ability to respond to leptin signals and produce further signals that regulate eating.

Further, the mice that were treated to make extra SH2B1 did not become obese or lose their ability to respond to leptin signals, even after being fed a high-fat diet that caused those effects in other mice.

"Obesity, whether in mice or humans, is the product of an altered balance between energy intake and energy use. The imbalance is linked to alterations in leptin and insulin signaling that lead to excess weight gain and Type 2 diabetes, respectively," says Rui, an assistant professor of molecular and integrative physiology.

Rui worked on the new paper with postdoctoral fellow Decheng Ren, who also collaborated on a paper in the journal Cell Metabolism in 2005 that first indicated SH2B1's key role in obesity. He made initial discoveries about SH2B1's role in brain signaling while working with former mentor and current colleague Christin Carter-Su, a professor of molecular and integrative physiology and head of the biomedical research division of the Michigan Diabetes Research and Training Center.

In addition to revealing the importance of SH2B1 activity in the brain, the new paper shows that SH2B1 is expressed in four different forms in many tissues of the body, including fat cells known as adipose tissue, as well as the liver, heart, pancreas and muscle.

Rui and his team also explored the role of SH2B1 in fat cells, finding that the knockout mice that lacked the SH2B1 gene stored away much more fat than normal mice, and had much larger fat cells—giving them two-and-a-half times more body fat content than normal mice. The mice that had some of their SH2B1 restored in just their brains by genetic alteration did not experience this—and in fact had less fat than normal mice.

Since these mice lacked the ability to make SH2B1 in their fat cells, the authors suspect that fat-cell SH2B1 encourages the storing of fat. When they tested this theory, they found that SH2B1 appeared to help mouse embryonic cells turn into fat cells, a process called adipogenesis. But, they suspect, the action of SH2B1 in the brain trumps its action in fat tissue, leading to the development of obesity in mice that lack SH2B1 in both locations.

The researchers now hope to explore SH2B1's role in the brain and body even further, and to translate their findings into clinical research involving humans—leading to better tactics for understanding the causes of obesity and its consequences, and perhaps better methods for preventing and reversing them.

In addition to Rui and Ren, other authors are postdoctoral fellows Yingjiang Zhou, Minghua Li, and Zhiqin Li, and graduate student David Morris.

More Stories