The University of MichiganNews Services
The University Record Online
search
Updated 10:00 AM February 2, 2009
 

front

accolades

briefs

view events

submit events

UM employment


obituaries
police beat
regents round-up
research reporter
letters


archives

Advertise with Record

contact us
meet the staff
contact us
contact us

 
Scientist to create global maps of CO2

The first global maps of atmospheric carbon dioxide levels based on data from NASA's Orbiting Carbon Observatory (OCO) will be created by a University researcher and her colleagues.

The team will use sophisticated mathematical techniques to fill information gaps between the satellite's direct measurements, the closest of which will be 93 miles apart at the equator.
NASA's Orbiting Carbon Observatory will launch Feb. 23. (Photo courtesy NASA)

Leading the carbon cartographers is Anna Michalak, an assistant professor in the Department of Civil and Environmental Engineering and the Department of Atmospheric, Oceanic and Space Sciences.

OCO is scheduled to launch Feb. 23. As the first NASA satellite designed exclusively to study carbon dioxide, OCO's data, along with Michalak's maps, will provide unprecedented detail about this greenhouse gas in the atmosphere.

OCO will clarify how levels of carbon dioxide fluctuate across continents, oceans and seasons. It will work to identify the sources and sinks of carbon across the globe. Natural sinks are places that soak up CO2, such as plants and some areas of the oceans. Understanding the Earth's natural uptakes and emissions of carbon is critical to predicting the planet's future climate.

Michalak and her colleagues' work will involve filling the information gaps between the OCO's measurement points without introducing assumptions that could obscure the results.

OCO will orbit from pole to pole, taking advantage of Earth's rotation to maximize its coverage. Each day, it will capture data from approximately 16 strips of the globe, each 10 kilometers, or 6.2 miles, wide. Every 16 days it will return to the same place, Michalak says.

"While the OCO can measure the concentrations of carbon in the atmosphere with unprecedented detail, it can't look everywhere," she says. "Even after 16 days, the closest measured strips will be 150 kilometers apart at the equator. Also, OCO cannot see through clouds and atmospheric aerosols. Most of the world will not be directly measured."

Michalak and her colleagues will use sophisticated geostatistical modeling tools to interpolate information about the places in between OCO's measurements. An important part of their process involves using OCO data to determine how much carbon dioxide levels fluctuate across the globe. Knowing this variability will help them paint their full picture.

The finished carbon maps could help solve an enduring mystery. Levels of carbon dioxide in the air have steadily increased since the Industrial Revolution. But remarkably, these atmospheric concentrations have not spiked as dramatically as emissions.

While humans emit about 8 billion tons of carbon into the atmosphere each year by burning fossil fuels, only about 4 billion tons end up in the air. Oceans likely sequester 2 billion tons of what's missing. But that leaves 2 billion tons — 25 percent — of the carbon humans emit into the atmosphere unaccounted for.

Plants are likely taking it up, Michalak says, but scientists don't know exactly where or why.

More Stories